Embedding
in

Tiark Rompf PURDUE

DSL Summer School, July 2015

SONY
make.believe
Lmkedm

SIEMENS Xerox ;)
<~ outside.in
¢
& S EeDF
foursquare
‘-%% UBS TOMTOM " amazon
Office .
A guardian
Efl‘fg&mf
mmaﬂ of Buisiness Bankof America -
. > yammers

_ Autodesk“ CREDIT SUISSE =

Scala = scalable language

Small Scripts -> Large Systems

gradual, evolutionary

FP + OOP

class Matrix[T:Numeric](val rows: Int, val cols: Int) {
private val arr: Array[T] = new Array[T](rows * cols)

def apply(i: Int, j: Int): T = arr(i*cols + j)

def *(that: Matrix[T]) = { val res = new Matrix[T]; ...; res }
def +(that: Matrix[T]) = ...

// a,b,c,d: Matrix[Double]

val x = a*b + a*c
val y = a*c + a*d
println(x+y)

Operator overloading, higher-order functions, by-name parameters,
implicits, traits, ...

What about performance?

"The compiler / JVM will
make it run fast"

10x — 1000x slowdown

(hard reality)

I nfo 3 Architecture Process & Operations &

En | 83 | B&EE | Br Development & Design Practices Infrastructure

562,907 Mar unique visitors

Mobile = HTMLS JavaScript Agile Techniques Cloud Security ¥ SOA Agile ALM |

My Bookmarks Contribute an Article Im

Yammer Moving from Scala to Java

Posted by Alex Blewitt on Nov 30, 2011
Sections Development Topics
Programming , Social Networki

Share | ﬁ@dzmi

An e-mail, sent from Ya
Typesafe, ended up bein
that Yammer is moving i
with complexity and pe

Yammer PR Shelley Risk
of Coda Hale, rather tha
original author has been
Coda clarified that the m
(CEO of Typesafe) followi

Update: Code has publis

Slow Program -> Fast Program?

"Any problem in computer
science can be solved by another
level of indirection”

"Any problem in computer
science can be solved by
another level of indirection --
except problems caused by too
many levels of indirection”

cols: Int) {
new Array rows * cols)
ic[T]]; import num._

class Matrix[T:Nume :Manifes
private val are: Array[T] =
private val num =T 1citl

def apply(i: Int, 7j:
arr(i*cols + J)

def update(i: Int, 7j: Int,
arr(i*cols + j) = e

def *(that: Matrix[T]) = {
val res = new Matrix[T](this.

for (1 <- @ until thi
for (j <- @ una .cols) {
for (k <- @ until this.rows)
res(i, j) += this(i, k) * thatCk, 7)

res

Abstraction
&

Generalization

Programming

Time

Abstraction
&

Generalization

Programming

> Mind the gap!

Time

~

SX0m
e [TE

vAho
rey D, Ullman. X

h 4
Je1

i

Programmer

® - general purpose compiler

Hardware

(illustration: Markus Puschel)

Programmer

............................... Matrix, Graph,

.................................. Array, Struct, Loop, ...

* horizontal and vertical
extensibility

e generic optimizations

Hardware at each level (cse, dce, ...)

............................... SIMD, GPU, cluster, ...

Secret Weapon:

LMS = Lightweight Modular Staging

* An extensible compiler framework
* Implemented as a Scala library
* Execute 'now' vs 'compile and exec later’

e Specialize and compile program pieces at
runtime

Staging = Multi-Stage Programming

 Computations can generally be separated into
stages (Jorring, Scherlis 1986), distinguished by:
— frequency of execution
— availability of data

* Multi-Stage Programming (Taha, Sheard 1997):
make stages explicit in a program:

— “delay” expressions to a generated stage
— “run” delayed expressions
— staged program fragments as first class values

program generically ...

... and run specialized !

Projects / Collaborations

Delite (Stanford)

Onward!'10, PACT'11,DSL'11,IEEE Micro 10/11, ECOOP'13 ,GPCE'13, TECS 4/14

— DSLs and Big Data on heterogeneous devices

Spiral (ETH) epce'13, ARRAY'14
— Fast numeric libraries
LegoBase (EPFL DATA) bcp14, vipe'14
— Databases and query processing
Lancet (Oracle Labs) rioria
— Integrate LMS with JVM / JIT compilation
Hardware (EPFL PAL) rpr13, FrL'14
— Domain specific HW synthesis
Parser Combinators (EPFL LAMP) oopsLa'14
— Protocols and dynamic programming
JavaScript (EPFL, INRIA Rennes) ecoor'12, Gpce'13
— LMS for the web

ORACLE

PERYASHE
PARALLELSM
LABORATORY

&
PP

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

= Lightweight Modular Staging

Int, String, T
— "execute now"

Rep[Int], Rep[String], Rep[T]
— "generate code to execute later"

if (c)aelseb -> _ ifThenElse(c,a,b)
— "language virtualization"

Extensible IR, transformers, loop fusion, ...

"Batteries included"

Example: Matrix

class Matrix[T:Numeric:Manifest](val rows: Rep[Int], val cols: Rep[Int]) {
private val arr: Rep[Array[T]] = ArrayNew[T](rows * cols)
private val num = implicitly[Numeric[T]]; import num._

def apply(i: Rep[Int], j: Rep[Int]): A =
arr(i*cols + J)

def update(i: Rep[Int], j: Rep[Int], e: Rep[A]): Unit =
arr(i*cols + j) = e

def *(that: Matrix[T]) = {
val res = new Matrix[T](this.rows, that.cols)

for (1 <- 0 until this.rows) {

for (j <- @ until that.cols) { Matrices are “now”
for (k <- @ until this.rows) objects, their data
res(i, j) += this(i, k) * thatCk, 7) arrays are “later”
1 ; objects
res
}

Generate Low-Level Code

val m = randomMatrix(500, 100
var x27 = 500 * 500 _ ; ’
var x28 = new Array[Double](x27) val n = randomMatrix(100, 500)
var x29: Int = 0 val p =m * n

while (x29 < 500) {

var x30: Int = 0
while (x30 < 500) {
var x31: Int = 0
while (x31 < 100) { --- generic took 2.691s

--- generic took 1.4s
--- generic took 1.464s

x31 += 1 --- generic took 1.359s
} --- generic took 1.244s
var x46 = ()
X406 --- double took 1.062s

--- double took 1.228s

x30 += 1
--- double took 1.076s
} --- double took 1.03s
var x47 = () --- double took 1.076s
x47
x29 += 1 --- staged took 0.088s
} --- staged took 0.058s Zox !

--- staged took 0.055s

. .) --- staged took 0.054s
(still far from optimal: __ staged took 0.056s

should block loops for locality)

User code

orintin(...) < Sym(32) = Reflect(PrintIn(...), ...) >
val mystring = ... // Rep[String]
printin(mystring.length)

DSL interface < Sym(43) =.... // mystring)

type Rep|[T]

\
def infix_length(s: Rep[String]): Rep[Int] Sym(46) = StrLength(Sym(45)))
def printin(x: Rep[Any]): Rep[Unit]

\ I
DSL Implementation (Sym(47) = Reflect(PrintIn(Sym(46)), List(Sym(32))>

type Rep[T] = Exp[T] // Sym|[T] | Const[T]

case class StrLength(s: Exp[String]) extends Def[Int]
case class PrintIn(s: Exp[Any]) extends Def[Unit]

def infix_length(s: Exp[String]): Exp[Int] = s match { case Const(s) => Const(s.length)

case _ => reflectPure(StrLength(s)) }
def printin(x: Exp[Any]): Exp[Unit] = reflectEffect(Println(x))

Demo Time

https://scala-Ims.github.io/tutorials/shonan.html

http://scala-Ims.github.io/tutorials/ling.html|

) LMS for Efficient

=
- Y;’mis Klonatos, Christoph Koch (EPFL),
Hassan Chafi, Tiark Rompf (Oracle)

Databases: State of the Art

Popular generic DBMSs consist of > 1M lines of optimized C code

Manual specialization for performance — e.g. PostgreSQL:
— 20 implementations of memory page abstraction
— 7 implementations of B-trees

Difficult to adapt
— e.g. disk based 2 in memory

Still 10 — 100x slower than hand-written queries
(Stonebraker: time for a complete rewrite, Zukowski: Monetdb/x100)

Commercial DBMS interpret query execution plans
— some research on query compilation using LLVM (e.g. HyPer)

LegoBase

* New in-memory DB query engine, written in Scala

» Staged query interpreter

— Compiles query execution plans (from Oracle DB) to C
code

— Supports all 22 TPCH queries
— ~3000 lines of Scala code

 Use LMS for additional optimizations
— Operator inlining
— Optimizing data structures
— Optimizing control flow (push vs pull)

It is indeed possible to write high performance
systems in a high level language

Klonatos et al. VLDB '14

lest Paper Award

P

[iark Rompti

for the paperl
pailding Efficient Query Engines
a High-| cvel lLangus

; 23
T "1&‘2’15;&

A SQL engine in 500 LOC

https://scala-Ims.github.io/tutorials/query.html

Rompf and Amin, ICFP'15

Data is not only stored
but also transferred

Efficient, hand-optimized HTTP parser

switch (s) {
case s_req_spaces before url:
if (ch == "/" [| ch == "*") {
return s_req_path;
}
if (IS_ALPHA(ch)) {
return s_req_schema;

}

break;

case s_req_schema:
if (IS_ALPHA(ch)) {

return s;
}
if (ch == ":") {
return s_req_schema_slash;
}
break;

Originally part of Nginx,
later Node.js

2000+ lines of code

Callbacks for header
names/values triggered

State-machine like code

“Flat” code, loops/conditions

Jonnalagedda et al. OOPSLA'14

Staged Parser Combinators

def status: Parser[Int] =
("HTTP/"~decimalNumber)~>wholeNumber<~(wildRegex~crlf) ~* (_.tolInt)

def header: Parser[Option[(String,Any)]] =

(headerName<~":")~(wildRegex<~crlf) ~~ {
case hName~prop => collect(hName.tolLowerCase, prop)

}

def headers = rep(header)

def response = status ~ headers

e 200+ lines of code
« Fairly easy to change behaviour of a parser
e Ex: ~vs<{~vs~>

Jonnalagedda et al. OOPSLA'14

Staged Parser Combinators

_ | | | |
» NGINX
HTTP
w = Staged Scala
| | | | & Scala Combinators
0 50 100 150 200 250 300
| | | |
JQ

JSON

& Staged Scala

& Spray/Parboiled

Jonnalagedda et al. OOPSLA'14

