A Theory of Name Resolution

Pierre Neron¹

Andrew Tolmach²

Eelco Visser¹

Guido 1 Wachsmuth


```
module A {
    def s = 5
}
module B {
    import A
    def x = 6
    def y = 3 + s
    def f =
      fun x { x + y }
}
```

module A { def s = 5} module B { import A def x = 6def y = 3 + sdef f = fun x { x + y } }

module A { def s = 5} module B { import A def x = 6def y = 3 + sdef f = fun x { x + y } }

module A { def s = 5module module } В def import def def def Α module B { import A fun 5 f S A 6 X У +def x = 63 def y = 3 + sS Х +def f = Χ fun x { x + y } y }

}

Use Scope Graphs to Describe Name Resolution

Use Scope Graphs to Describe Name Resolution ??

Appears in many different artifacts...

Appears in many different artifacts...

Compiler

Appears in many different artifacts...

Compiler

Semantics

Appears in many different artifacts...

Compiler

Semantics

IDE

Appears in many different artifacts...

Compiler Semantics IDE

... with rules encoded in many different ad-hoc ways

Appears in many different artifacts...

Compiler Semantics

... with rules encoded in many different ad-hoc ways

IDE

Appears in many different artifacts...

Compiler

Semantics

x:int, Γ

 $[3/x].\sigma$

... with rules encoded in many different ad-hoc ways

Appears in many different artifacts...

Compiler

Semantics

... with rules encoded in many different ad-hoc ways

 $[3/x].\sigma$

x:int, Γ

Appears in many different artifacts...

Compiler Semantics IDE

... with rules encoded in many different ad-hoc ways

No standard approach, no re-use

A standard formalism

Context-Free

Grammars

A unique definition

A standard formalism

Context-Free

Grammars

A unique definition

A standard formalism

- Many approaches to representing the results of name resolution within an (extended) AST, e.g.
 - numeric indexing [deBruijn72]
 - higher-order abstract syntax [PfenningElliott88]
 - nominal logic approaches [GabbayPitts02]

- Many approaches to representing the results of name resolution within an (extended) AST, e.g.
 - numeric indexing [deBruijn72]
 - higher-order abstract syntax [PfenningElliott88]
 - nominal logic approaches [GabbayPitts02]
- Good support for binding-sensitive AST manipulation

- Many approaches to representing the results of name resolution within an (extended) AST, e.g.
 - numeric indexing [deBruijn72]
 - higher-order abstract syntax [PfenningElliott88]
 - nominal logic approaches [GabbayPitts02]
- Good support for binding-sensitive AST manipulation
- But: Do not say how to resolve identifiers in the first place!
 - Also: Can't represent ill-bound programs
 - And: Tend to be biased towards lambda-like bindings

- Many proposals for domain-specific languages (DSLs) for specifying binding structure of a (target) language, e.g.
 - Ott [Sewell+10]
 - Romeo [StansiferWand14]
 - Unbound [Weirich+11]
 - Caml [Pottier06]
 - NaBL [Konat+12]

- Many proposals for domain-specific languages (DSLs) for specifying binding structure of a (target) language, e.g.
 - Ott [Sewell+10]
 - Romeo [StansiferWand14]
 - Unbound [Weirich+11]
 - Caml [Pottier06]
 - NaBL [Konat+12]
- Generate code to do resolution and record results

- Many proposals for domain-specific languages (DSLs) for specifying binding structure of a (target) language, e.g.
 - Ott [Sewell+10]
 - Romeo [StansiferWand14]
 - Unbound [Weirich+11]
 - Caml [Pottier06]
 - NaBL [Konat+12]
- Generate code to do resolution and record results
- But: what are the **semantics** of such a language?

 Answer: the meaning of a binding specification for language L should be given by a function from L programs to their "resolution structures"

- Answer: the meaning of a binding specification for language L should be given by a function from L programs to their "resolution structures"
- So we need a (uniform, language-independent) method for describing such resolution structures...

- Answer: the meaning of a binding specification for language L should be given by a function from L programs to their "resolution structures"
- So we need a (uniform, language-independent) method for describing such resolution structures...
- ...that can be used to compute the resolution of each program identifier

- Answer: the meaning of a binding specification for language L should be given by a function from L programs to their "resolution structures"
- So we need a (uniform, language-independent) method for describing such resolution structures...
- ...that can be used to compute the resolution of each program identifier
 - (or to verify that a claimed resolution is valid)
• Handle broad range of language binding features...

- Handle broad range of language binding features...
- ...using minimal number of constructs

- Handle broad range of language binding features...
- ...using minimal number of constructs
- Make resolution structure language-independent

- Handle broad range of language binding features...
- ...using minimal number of constructs
- Make resolution structure language-independent
- Handle named collections of names (e.g. modules, classes, etc.) within the theory

- Handle broad range of language binding features...
- ...using minimal number of constructs
- Make resolution structure language-independent
- Handle named collections of names (e.g. modules, classes, etc.) within the theory
- Allow description of programs with resolution errors

For statically lexically scoped languages

For statically lexically scoped languages

A standard formalism

Scope

Graphs

For statically lexically scoped languages

A unique representation

A standard formalism

Scope Graphs

For statically lexically scoped languages

A unique representation

A standard formalism

Scope

Graphs

Reasoning tools

Resolution Scheme

Resolution Scheme

Resolution of a reference in a scope graph:

Building a **path** from a **reference** node to a **declaration** node following path construction **rules**

Resolution Scheme

Resolution of a reference in a scope graph:

Building a **path** from a **reference** node to a **declaration** node following path construction **rules** *Parameterized by notions of path **well-formedness** and **ordering**

Scope Graphs by Example

def
$$y_1 = x_2 + 1$$

def $x_1 = 5$

def
$$y_1 = x_2 + 1$$

def $x_1 = 5$

$$def y_1 = x_2 + 1$$

$$def x_1 = 5$$

S0
def
$$y_1 = x_2 + 1$$

def $x_1 = 5$

def
$$x_1 = 5$$
 S0
def $x_2 = 3$
def $z_1 = x_3 + 1$

def
$$x_1 = 5$$
 S0
def $x_2 = 3$
def $z_1 = x_3 + 1$

def
$$x_1 = 5$$
 S0
def $x_2 = 3$
def $z_1 = x_3 + 1$

def
$$x_1 = 5$$
 S0
def $x_2 = 3$
def $z_1 = x_3 + 1$

def
$$x_1 = 5$$
 S0
def $x_2 = 3$
def $z_1 = x_3 + 1$

def
$$x_1 = 5$$
 S0
def $x_2 = 3$
def $z_1 = x_3 + 1$

def
$$x_1 = 5$$
 S0
def $x_2 = 3$
def $z_1 = x_3 + 1$

Lexical Scoping

Lexical Scoping

Lexical Scoping

S0
def
$$x_1 = z_2 5$$

def $z_1 = fun y_1 \{ S1 \\ x_2 + y_2 \}$
S0
def
$$x_1 = z_2 5$$

def $z_1 =$
fun $y_1 \{ S1 \\ x_2 + y_2 \}$

Well formed path: R.P*.D

D < **P**.**p**

D < P.p
p < p'
s.p < s.p'</pre>

D < P.p p < p' s.p < s.p'

R.P.D < R.P.P.D

Imports shadow Parents

def
$$z_3 = 2$$
 SO
module A_1 {
def $z_1 = 5$ SA
}
module B_1 {
import A_2 SB
def $x_1 = 1 + z_2$
}

Imports shadow Parents

def
$$z_3 = 2$$
 S0
module $A_1 \{$
def $z_1 = 5$ SA
}
module $B_1 \{$
import A_2 SB
def $x_1 = 1 + z_2$
}

I(_).p' < P.p

 \Rightarrow R.I(A₂).D < R.P.D

 $\implies R.D < R.I(A_2).D$

 $D < I(_).p'$

D < I(_).p'

 $R.D < R.I(A_2).D$

def
$$s_1 = 5$$

module N_1 {
 SN
}
def $x_1 = 1 + N_2.s_2$

Well formed path: R.P*.I(_)*.D

module A₁ {
 def
$$z_1 = 5$$
 SA
}
module B₁ {
 import A₂ SB
}
module C₁ {
 import B₂ SC
 def x₁ = 1 + z₂
}

With transitive imports, a well formed path is R.P*.I(_)*.D

With non-transitive imports, a well formed path is $R.P*.I(_)?.D$

D < P.p	I(_).p' < P.p
p < p '	
s.p < s.p'	D < I(_).p'
A Calculus for Name Resolution

Theory of Scope Graphs

Scope graphs, formally

 $x_i^{\mathsf{D}}:S$ declaration with name x at position i with optional associated scope S

 x_i^{R} reference with name x at position *i*

Scope graphs, formally

 $x_i^{\mathsf{D}}:S$ declaration with name x at position i with optional associated scope S

x_i^{R} reference with name x at position *i*

```
\mathcal{G}: scope graph
\mathcal{S}(\mathcal{G}): scopes S in \mathcal{G}
\mathcal{D}(S): declarations x_i^{\mathsf{D}}:S' in S
\mathcal{R}(S): references x_i^{\mathsf{R}} in S
\mathcal{I}(S): imports x_i^{\mathsf{R}} in S
\mathcal{P}(S): parent scope of S
```

Scope graphs, formally

 $x_i^{\mathsf{D}}:S$ declaration with name x at position i with optional associated scope S

x_i^{R} reference with name x at position i

- \mathcal{G} : scope graph $\mathcal{S}(\mathcal{G})$: scopes S in \mathcal{G} $\mathcal{D}(S)$: declarations $x_i^{\mathsf{D}}:S'$ in S $\mathcal{R}(S)$: references x_i^{R} in S $\mathcal{I}(S)$: imports x_i^{R} in S $\mathcal{P}(S)$: parent scope of S
- $\mathcal{P}(S)$ is a partial function
- The parent relation is well-founded
- Each x_i^{R} and x_i^{D} appears in exactly one scope S

Resolution paths

$$\frac{x_i^{\mathsf{R}} \in \mathcal{R}(S) \quad \{x_i^{\mathsf{R}}\} \cup \mathbb{I} \vdash p : S \longmapsto x_j^{\mathsf{D}}}{\mathbb{I} \vdash p : x_i^{\mathsf{R}} \longmapsto x_j^{\mathsf{D}}}$$

Resolution paths -

$$\frac{x_i^{\mathsf{R}} \in \mathcal{R}(S) \quad \{x_i^{\mathsf{R}}\} \cup \mathbb{I} \vdash p : S \longmapsto x_j^{\mathsf{D}}}{\mathbb{I} \vdash p : x_i^{\mathsf{R}} \longmapsto x_j^{\mathsf{D}}} \xrightarrow{\mathsf{x}_i \longrightarrow \mathsf{x}_j}}$$

Resolution paths
$$\frac{x_i^{\mathsf{R}} \in \mathcal{R}(S) \quad \{x_i^{\mathsf{R}}\} \cup \mathbb{I} \vdash p : S \longmapsto x_j^{\mathsf{D}}}{\mathbb{I} \vdash p : x_i^{\mathsf{R}} \longmapsto x_j^{\mathsf{D}}}$$
Visibility paths

$$\frac{\mathbb{I} \vdash p: S \rightarrowtail x_i^{\mathsf{D}} \qquad \forall j, p' (\mathbb{I} \vdash p': S \rightarrowtail x_j^{\mathsf{D}} \Rightarrow \neg (p' < p))}{\mathbb{I} \vdash p: S \longmapsto x_i^{\mathsf{D}}}$$

Resolution paths
$$\frac{x_i^{\mathsf{R}} \in \mathcal{R}(S) \quad \{x_i^{\mathsf{R}}\} \cup \mathbb{I} \vdash p : S \longmapsto x_j^{\mathsf{D}}}{\mathbb{I} \vdash p : x_i^{\mathsf{R}} \longmapsto x_j^{\mathsf{D}}} \xrightarrow{[\mathsf{x}_i] \longrightarrow [\mathsf{x}_j]}}$$

Visibility paths

$$\frac{\mathbb{I} \vdash p: S \rightarrowtail x_i^{\mathsf{D}} \qquad \forall j, p' (\mathbb{I} \vdash p': S \rightarrowtail x_j^{\mathsf{D}} \Rightarrow \neg (p' < p))}{\mathbb{I} \vdash p: S \longmapsto x_i^{\mathsf{D}}}$$

Reachability paths

$$\mathbb{I} \vdash p : S \rightarrowtail x_i^{\mathsf{D}}$$

•

Resolution paths
$$\frac{x_i^{\mathsf{R}} \in \mathcal{R}(S) \quad \{x_i^{\mathsf{R}}\} \cup \mathbb{I} \vdash p : S \longmapsto x_j^{\mathsf{D}}}{\mathbb{I} \vdash p : x_i^{\mathsf{R}} \longmapsto x_j^{\mathsf{D}}} \xrightarrow{\mathbf{x}_i \longrightarrow \mathbf{x}_j}$$

Visibility paths

$$\frac{\mathbb{I} \vdash p: S \rightarrowtail x_i^{\mathsf{D}} \qquad \forall j, p' (\mathbb{I} \vdash p': S \rightarrowtail x_j^{\mathsf{D}} \Rightarrow \neg (p' < p))}{\mathbb{I} \vdash p: S \longmapsto x_i^{\mathsf{D}}}$$

Reachability paths

$$\overline{\mathbb{I} \vdash p: S \rightarrowtail x_i^{\mathsf{D}}}$$

•

...may include import steps $\frac{y_i^{\mathsf{R}} \in \mathcal{I}(S_1) \setminus \mathbb{I} \quad \mathbb{I} \vdash p : y_i^{\mathsf{R}} \longmapsto y_j^{\mathsf{D}}:S_2}{\mathbb{I} \vdash \mathbf{I}(y_i^{\mathsf{R}}, y_j^{\mathsf{D}}:S_2) : S_1 \longrightarrow S_2}$

$$\begin{array}{ll} \text{Resolution paths} & \frac{x_i^{\mathsf{R}} \in \mathcal{R}(S) \quad \{x_i^{\mathsf{R}}\} \cup \mathbb{I} \vdash p : S \longmapsto x_j^{\mathsf{D}}}{\mathbb{I} \vdash p : x_i^{\mathsf{R}} \longmapsto x_j^{\mathsf{D}}} \\ & \mathbb{I} \vdash p : x_i^{\mathsf{R}} \longmapsto x_j^{\mathsf{D}} & \mathbb{I} \vdash p : S \longmapsto x_j^{\mathsf{D}} \\ & \mathbb{I} \vdash p : S \longmapsto x_i^{\mathsf{D}} & \mathbb{I} \vdash p : S \longmapsto x_i^{\mathsf{D}} \\ & \mathbb{I} \vdash p : S \longmapsto x_i^{\mathsf{D}} \\ \end{array}$$

$$\begin{array}{l} \text{Reachability paths} & \frac{:}{\mathbb{I} \vdash p : S \longmapsto x_i^{\mathsf{D}}} & \underbrace{\text{Well-founded}}_{\text{I} \vdash p : S \longmapsto x_i^{\mathsf{D}}} \\ & \dots \text{may include import steps} \\ & \frac{y_i^{\mathsf{R}} \in \mathcal{I}(S_1) \setminus \mathbb{I} \quad \mathbb{I} \vdash p : y_i^{\mathsf{R}} \longmapsto y_j^{\mathsf{D}} : S_2}{\mathbb{I} \vdash \mathsf{I}(y_i^{\mathsf{R}}, y_j^{\mathsf{D}} : S_2) : S_1 \longrightarrow S_2} \end{array}$$

- Resolution calculus says how to validate paths but not how to find them
 - and reachability paths can have cycles

- Resolution calculus says how to validate paths but not how to find them
 - and reachability paths can have cycles
- But there is a terminating resolution algorithm
 - for path well-foundedness RP*I*D
 - and path ordering D < I < P

- Resolution calculus says how to validate paths but not how to find them
 - and reachability paths can have cycles
- But there is a terminating resolution algorithm
 - for path well-foundedness RP*I*D
 - and path ordering D<I<P
- Uses familiar notions of environments and shadowing

$$E_D(S) \qquad := \mathcal{D}(S)$$

 $E_P(S) := E_V(\mathcal{P}(S))$

$$E_I(S) \qquad := \bigcup \left\{ E_L(S_y) \mid y_i^{\mathsf{R}} \in \mathcal{I}(S) \land y_j^{\mathsf{D}}: S_y \in \operatorname{Resolve}(y_i^{\mathsf{R}}) \right\}$$

 $E_L(S) \qquad := E_D(S) \triangleleft E_I(S)$

 $E_V(S) := E_L(S) \triangleleft E_P(S)$

 $Resolve(x_i^{\mathsf{R}}) := \{ x_j^{\mathsf{D}} \mid \exists S \ s.t. \ x_i^{\mathsf{R}} \in \mathcal{R}(S) \land x_j^{\mathsf{D}} \in E_V(S) \}$ where $E_1 \triangleleft E_2 := E_1 \cup \{ x_i^{\mathsf{D}} \in E_2 \mid \nexists \ x_{i'}^{\mathsf{D}} \in E_1 \}$

$$E_D(S) \qquad := \mathcal{D}(S)$$

 $E_P(S) := E_V(\mathcal{P}(S))$

$$E_I(S) \qquad := \bigcup \left\{ E_L(S_y) \mid y_i^{\mathsf{R}} \in \mathcal{I}(S) \land y_j^{\mathsf{D}}: S_y \in \operatorname{Resolve}(y_i^{\mathsf{R}}) \right\}$$

 $E_L(S) \qquad := E_D(S) \triangleleft E_I(S)$

 $E_V(S) := E_L(S) \triangleleft E_P(S)$

 $Resolve(x_i^{\mathsf{R}}) := \{ x_j^{\mathsf{D}} \mid \exists S \ s.t. \ x_i^{\mathsf{R}} \in \mathcal{R}(S) \land x_j^{\mathsf{D}} \in E_V(S) \}$ where $E_1 \triangleleft E_2 := E_1 \cup \{ x_i^{\mathsf{D}} \in E_2 \mid \nexists \ x_{i'}^{\mathsf{D}} \in E_1 \}$

still need to incorporate "seen imports"

 $E_D[\mathbb{I}](S) \qquad := \mathcal{D}(S)$

 $E_P[\mathbb{I}](S) \qquad := E_V[\mathbb{I}](\mathcal{P}(S))$

 $E_{I}[\mathbb{I}](S) \qquad := \bigcup \left\{ E_{L}[\mathbb{I}](S_{y}) \mid y_{i}^{\mathsf{R}} \in \mathcal{I}(S) \setminus \mathbb{I} \land y_{j}^{\mathsf{D}}: S_{y} \in Resolve[\mathbb{I}](y_{i}^{\mathsf{R}}) \right\}$

 $E_L[\mathbb{I}](S) := E_D[\mathbb{I}](S) \triangleleft E_I[\mathbb{I}](S)$

 $E_V[\mathbb{I}](S) := E_L[\mathbb{I}](S) \triangleleft E_P[\mathbb{I}](S)$

 $Resolve[\mathbb{I}](x_i^{\mathsf{R}}) := \{ x_j^{\mathsf{D}} \mid \exists S \ s.t. \ x_i^{\mathsf{R}} \in \mathcal{R}(S) \land x_j^{\mathsf{D}} \in E_V[\{x_i^{\mathsf{R}}\} \cup \mathbb{I}](S) \}$

where $E_1 \triangleleft E_2 := E_1 \cup \{x_i^{\mathsf{D}} \in E_2 \mid \nexists x_{i'}^{\mathsf{D}} \in E_1\}$

 $E_D[\mathbb{I}](S) \qquad := \mathcal{D}(S)$

 $E_P[\mathbb{I}](S) \qquad := E_V[\mathbb{I}](\mathcal{P}(S))$

 $E_{I}[\mathbb{I}](S) \qquad := \bigcup \left\{ E_{L}[\mathbb{I}](S_{y}) \mid y_{i}^{\mathsf{R}} \in \mathcal{I}(S) \setminus \mathbb{I} \land y_{j}^{\mathsf{D}}: S_{y} \in Resolve[\mathbb{I}](y_{i}^{\mathsf{R}}) \right\}$

 $E_L[\mathbb{I}](S) \qquad := E_D[\mathbb{I}](S) \triangleleft E_I[\mathbb{I}](S)$

 $E_V[\mathbb{I}](S) := E_L[\mathbb{I}](S) \triangleleft E_P[\mathbb{I}](S)$

 $Resolve[\mathbb{I}](x_i^{\mathsf{R}}) := \{ x_j^{\mathsf{D}} \mid \exists S \ s.t. \ x_i^{\mathsf{R}} \in \mathcal{R}(S) \land x_j^{\mathsf{D}} \in E_V[\{x_i^{\mathsf{R}}\} \cup \mathbb{I}](S) \}$

where $E_1 \triangleleft E_2 := E_1 \cup \{x_i^{\mathsf{D}} \in E_2 \mid \nexists x_{i'}^{\mathsf{D}} \in E_1\}$

 but still might not terminate due to cycles (e.g. consider a scope that imports itself)

$$E_D[\mathbb{I}, \mathbb{S}](S) \qquad := \begin{cases} \emptyset \text{ if } S \in \mathbb{S} \\ \mathcal{D}(S) \end{cases}$$

 $E_P[\mathbb{I}, \mathbb{S}](S) \qquad := \begin{cases} \emptyset \text{ if } S \in \mathbb{S} \\ E_V[\mathbb{I}, \{S\} \cup \mathbb{S}](\mathcal{P}(S)) \end{cases}$

$$E_{I}[\mathbb{I},\mathbb{S}](S) \qquad := \left\{ \bigcup_{i=1}^{\mathbb{Q}} \{ E_{L}[\mathbb{I},\{S\} \cup \mathbb{S}](S_{y}) \mid y_{i}^{\mathsf{R}} \in \mathcal{I}(S) \setminus \mathbb{I} \land y_{j}^{\mathsf{D}}: S_{y} \in Resolve[\mathbb{I}](y_{i}^{\mathsf{R}}) \right\}$$

 $E_L[\mathbb{I},\mathbb{S}](S) := E_D[\mathbb{I},\mathbb{S}](S) \triangleleft E_I[\mathbb{I},\mathbb{S}](S)$

 $E_V[\mathbb{I},\mathbb{S}](S) := E_L[\mathbb{I},\mathbb{S}](S) \triangleleft E_P[\mathbb{I},\mathbb{S}](S)$

 $Resolve[\mathbb{I}](x_i^{\mathsf{R}}) := \{ x_j^{\mathsf{D}} \mid \exists S \ s.t. \ x_i^{\mathsf{R}} \in \mathcal{R}(S) \land x_j^{\mathsf{D}} \in E_V[\{x_i^{\mathsf{R}}\} \cup \mathbb{I}, \emptyset](S) \}$

$$E_D[\mathbb{I}, \mathbb{S}](S) \qquad := \begin{cases} \emptyset \text{ if } S \in \mathbb{S} \\ \mathcal{D}(S) \end{cases}$$

 $E_P[\mathbb{I}, \mathbb{S}](S) \qquad := \begin{cases} \emptyset \text{ if } S \in \mathbb{S} \\ E_V[\mathbb{I}, \{S\} \cup \mathbb{S}](\mathcal{P}(S)) \end{cases}$

 $E_{I}[\mathbb{I},\mathbb{S}](S) \qquad := \left\{ \bigcup_{i=1}^{\mathbb{Q}} \{ E_{L}[\mathbb{I},\{S\} \cup \mathbb{S}](S_{y}) \mid y_{i}^{\mathsf{R}} \in \mathcal{I}(S) \setminus \mathbb{I} \land y_{j}^{\mathsf{D}}: S_{y} \in Resolve[\mathbb{I}](y_{i}^{\mathsf{R}}) \right\}$

 $E_L[\mathbb{I},\mathbb{S}](S) := E_D[\mathbb{I},\mathbb{S}](S) \triangleleft E_I[\mathbb{I},\mathbb{S}](S)$

 $E_V[\mathbb{I},\mathbb{S}](S) := E_L[\mathbb{I},\mathbb{S}](S) \triangleleft E_P[\mathbb{I},\mathbb{S}](S)$

 $Resolve[\mathbb{I}](x_i^{\mathsf{R}}) := \{ x_j^{\mathsf{D}} \mid \exists S \ s.t. \ x_i^{\mathsf{R}} \in \mathcal{R}(S) \land x_j^{\mathsf{D}} \in E_V[\{x_i^{\mathsf{R}}\} \cup \mathbb{I}, \emptyset](S) \}$

Lemma: visibility paths never have cycles

$$E_D[\mathbb{I}, \mathbb{S}](S) \qquad := \begin{cases} \emptyset \text{ if } S \in \mathbb{S} \\ \mathcal{D}(S) \end{cases}$$

$$E_P[\mathbb{I}, \mathbb{S}](S) \qquad := \begin{cases} \emptyset \text{ if } S \in \mathbb{S} \\ E_V[\mathbb{I}, \{S\} \cup \mathbb{S}](\mathcal{P}(S)) \end{cases}$$

$$E_{I}[\mathbb{I},\mathbb{S}](S) \qquad := \left\{ \bigcup_{i=1}^{\mathbb{Q}} \{ E_{L}[\mathbb{I},\{S\} \cup \mathbb{S}](S_{y}) \mid y_{i}^{\mathsf{R}} \in \mathcal{I}(S) \setminus \mathbb{I} \land y_{j}^{\mathsf{D}}: S_{y} \in Resolve[\mathbb{I}](y_{i}^{\mathsf{R}}) \right\}$$

$$E_L[\mathbb{I},\mathbb{S}](S) := E_D[\mathbb{I},\mathbb{S}](S) \triangleleft E_I[\mathbb{I},\mathbb{S}](S)$$

 $E_V[\mathbb{I},\mathbb{S}](S) := E_L[\mathbb{I},\mathbb{S}](S) \triangleleft E_P[\mathbb{I},\mathbb{S}](S)$

 $Resolve[\mathbb{I}](x_i^{\mathsf{R}}) := \{ x_j^{\mathsf{D}} \mid \exists S \ s.t. \ x_i^{\mathsf{R}} \in \mathcal{R}(S) \land x_j^{\mathsf{D}} \in E_V[\{x_i^{\mathsf{R}}\} \cup \mathbb{I}, \emptyset](S) \}$

Lemma: visibility paths never have cycles

Theorem: algorithm is sound and complete for calculus:

$$(x_j^{\mathsf{D}} \in \operatorname{Res}[\mathbb{I}](x_i^{\mathsf{R}})) \iff (\exists p \ s.t. \ \mathbb{I} \vdash p : x_i^{\mathsf{R}} \longmapsto x_j^{\mathsf{D}})$$

Language-independent α -equivalence

Program similarity

 $P \simeq P'$ if have same AST ignoring identifier names

Language-independent α -equivalence

Program similarity

 $P \simeq P'$ if have same AST ignoring identifier names

Position equivalence

Language-independent α -equivalence

Program similarity

 $\mathbf{P} \simeq \mathbf{P}$, if have same AST ignoring identifier names

Position equivalence

Alpha equivalence

 $P1 \stackrel{\alpha}{\approx} P2 \triangleq P1 \simeq P2 \land \forall e e', e \stackrel{P1}{\sim} e' \Leftrightarrow e \stackrel{P2}{\sim} e'$

(with some further details about free variables)

Preserving ambiguity

```
module A_1 {
  def x_2 := 1
module B_3 {
  def x_{4} := 2
module C_5  {
  import A_6 B_7;
  def y_8 := x_9
module D_{10} {
  import A_{11};
  def y_{12} := x_{13}
module E_{14} {
  import B_{15};
  def y_{16} := x_{17}
         P1
```

```
module AA<sub>1</sub> {
   def z_2 := 1
module BB<sub>3</sub> {
   def z_{4} := 2
module C_5 \in \{
   import AA<sub>6</sub> BB<sub>7</sub>;
   def s_8 := z_9
module D_{10} {
   import AA<sub>11</sub>;
   def u<sub>12</sub> := z<sub>13</sub>
module E_{14} {
   import BB_{15};
   def v_{16} := z_{17}
            P2
```

P2

module A_1 { **def** $z_2 := 1$ module B_3 { **def** $x_4 := 2$ module C_5 { import $A_6 B_7$; def $y_8 := z_9$ module D_{10} { import A_{11} ; **def** y_{12} := z_{13} module E_{14} { import B_{15} ; **def** y_{16} := x_{17} P3

P1 \approx^{α} P2

Applying Scope Graphs

(ongoing work)

Validation

Validation

- We have modeled a large set of example binding patterns
 - definition before use
 - different let binding flavors
 - recursive modules
 - imports and includes
 - qualified names
 - class inheritance
 - partial classes

- ...

Validation

- We have modeled a large set of example binding patterns
 - definition before use
 - different let binding flavors
 - recursive modules
 - imports and includes
 - qualified names
 - class inheritance
 - partial classes

- ...

- Next goal: fully model some real languages
 - Java
 - ML

- ...

Generating Scope Graphs from AST

$$\begin{split} \llbracket ds \rrbracket^{prog} &:= P(S) := \bot \land \llbracket ds \rrbracket_{S}^{decl^{*}} & (new S) \\ \llbracket \mathsf{module} X_{i} \{ ds \} \rrbracket_{s}^{decl} &:= X_{i}^{\mathsf{D}} : S' \in \mathcal{D}(s) \land P(S') := s \land \llbracket ds \rrbracket_{S'}^{decl^{*}} & (new S') \\ \llbracket \mathsf{import} Xs . X_{i} \rrbracket_{s}^{decl} &:= X_{i}^{\mathsf{R}} \in \mathcal{I}(s) \land \llbracket Xs . X_{i} \rrbracket_{s}^{qid} \\ \llbracket \mathsf{def} b \rrbracket_{s,s}^{decl} &:= \llbracket b \rrbracket_{s,s}^{bind} \\ \llbracket \mathsf{def} b \rrbracket_{s,s}^{decl} &:= \llbracket b \rrbracket_{s,s}^{bind} \\ \llbracket x_{i} = e \rrbracket_{s,s,d}^{bind} &:= x_{i}^{\mathsf{D}} \in \mathcal{D}(s_{d}) \land \llbracket e \rrbracket_{s,r}^{exp} \\ \llbracket x_{i} \rrbracket_{s}^{qid} &:= x_{i}^{\mathsf{R}} \in \mathcal{R}(s) \\ \llbracket \mathsf{fun} (x_{i} : t) \{ e \} \rrbracket_{s}^{exp} &:= P(S') := s \land x_{i}^{\mathsf{D}} \in \mathcal{D}(S') \land \llbracket e \rrbracket_{S'}^{exp} & (new S') \\ \llbracket \mathsf{letrec} bs \, \mathsf{in} \, e \rrbracket_{s}^{exp} &:= P(S') := s \land \llbracket bs \rrbracket_{S',S'}^{bind^{*}} \land \llbracket e \rrbracket_{S'}^{exp} & (new S') \\ \llbracket \mathsf{letpar} bs \, \mathsf{in} \, e \rrbracket_{s}^{exp} &:= P(S') := s \land \llbracket bs \rrbracket_{S,S'}^{bind^{*}} \land \llbracket e \rrbracket_{S'}^{exp} & (new S') \\ \llbracket [\mathsf{Ietpar} bs \, \mathsf{in} \, e \rrbracket_{s}^{exp} &:= [Xs . x_{i}]_{s}^{qid} \\ \llbracket e_{1} \, e_{2} \rrbracket_{s}^{exp} &:= \llbracket e_{1} \rrbracket_{s}^{exp} \land \llbracket e_{2} \rrbracket_{s}^{exp} \\ \end{split}$$

generate smallest graph satisfying constraints

Binding gives Types

Static type-checking (or inference) is one obvious client for name resolution

In many cases, we can perform resolution **before** doing type analysis

def x : int = 6
def f = fun (y : int) { x + y }

Binding gives Types

Static type-checking (or inference) is one obvious client for namefresoution (y : int) { x + y }

In many cases, we can perform resolution **before** doing type analysis

Binding gives Types

Static type-checking (or inference) is one obvious client for namerresolution = 6

In many cases, we can perform resolution before doing type analysis

Types give Binding

But sometimes we need types **before** we can do name resolution

record A₁ { x₁ : int }
record B₁ { a₁ : A₂ ; x₂ : bool}

def z_1 : $B_2 = ...$ def $y_1 = z_2.x_3$ def $y_2 = z_3.a_2.x_4$

Types give Binding

But sometimes we need types **before** we can do name resolution

record A₁ { x₁ : int }
record B₁ { a₁ : A₂ ; x₂ : bool}

def
$$z_1 : B_2 = ...$$

def $y_1 = z_2 . x_3$
def $y_2 = z_3 . a_2 . x_4$
But sometimes we need types **before** we can do name resolution

record $A_1 \{ x_1 : int \}$ record $B_1 \{ a_1 : A_2 ; x_2 : bool \}$ def $z_1 : B_2 = ...$ def $y_1 = z_2.x_3$ def $y_2 = z_3.a_2.x_4$

But sometimes we need types **before** we can do name resolution

record $A_1 \{ x_1 : int \}$ record $B_1 \{ a_1 : A_2 ; x_2 : bool \}$ def $z_1 : B_2 = ...$ def $y_1 = z_2.x_3$ def $y_2 = z_3.a_2.x_4$

But sometimes we need types **before** we can do name resolution

record A₁ { x₁ : int }
record B₁ { a₁ : A₂ ; x₂ : bool}

def z_1 : $B_2 = ...$ def $y_1 = z_2.x_3$ def $y_2 = z_3.a_2.x_4$

But sometimes we need types **before** we can do name resolution

record $A_1 \{ x_1 : int \}$ record $B_1 \{ a_1 : A_2 ; x_2 : bool \}$

def
$$z_1 : B_2 = ...$$

def $y_1 = z_2 . x_3$
def $y_2 = z_3 . a_2 . x_4$

But sometimes we need types **before** we can do name resolution

record $A_1 \{ x_1 : int \}$ record $B_1 \{ a_1 : A_2 ; x_2 : bool \}$ def $z_1 : B_2 = ...$ def $y_1 = z_2.x_3$ def $y_2 = z_3.a_2.x_4$

But sometimes we need types **before** we can do name resolution

```
record A_1 \{ x_1 : int \}
record B_1 \{ a_1 : A_2 ; x_2 : bool \}
def z_1 : B_2 = ..
def y_1 = z_2.x_3
def y_2 = z_3.a_2.x_4
```

But sometimes we need types **before** we can do name resolution

record $A_1 \{ x_1 : int \}$ record $B_1 \{ a_1 : A_2 ; x_2 : bool \}$ def $z_1 : B_2 = .$. def $y_1 = z_2.x_3$ def $y_2 = z_3.a_2.x_4$

But sometimes we need types **before** we can do name resolution

But sometimes we need types **before** we can do name resolution

Our approach: interleave **partial** name resolution with type resolution (also using constraints)

 Scope graph semantics for binding specification languages (starting with NaBL)

- Scope graph semantics for binding specification languages (starting with NaBL)
- Resolution-sensitive program transformations (e.g. renaming, refactoring)

- Scope graph semantics for binding specification languages (starting with NaBL)
- Resolution-sensitive program transformations (e.g. renaming, refactoring)
- Dynamic analogs to static scope graphs

Use Scope Graphs to Describe Name Resolution

Use Scope Graphs to Describe Name Resolution !!