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Name Resolution is Pervasive

Appears in many different artifacts…

… with rules encoded in many different ad-hoc ways 
Semantics

x : ⌧1,� ` e : ⌧2
� ` �x.e : ⌧1 ! ⌧2

�(x) = ⌧

� ` x : ⌧

Compiler

Parsing Semantics 
Analysis

Code 
Genenation

Symbol
Table

IDE

x:int, 𝚪 lookup(xi)

[3/x].𝛔

No standard approach, no re-use 
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A unique  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A standard
formalism

program = decl

⇤

decl = module id { decl

⇤
}

| import qid

| def id = exp

exp = qid

| fun id { exp }

| fix id { exp }

| let bind

⇤
in exp

| letrec bind

⇤
in exp

| letpar bind

⇤
in exp

| exp exp

| exp � exp

| int

qid = id

| id . qid
bind = id = exp
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Contrast with Syntax

A unique  
definition

A standard
formalism Supports

Parser

AST

Pretty-Printing

program = decl

⇤

decl = module id { decl

⇤
}

| import qid

| def id = exp

exp = qid

| fun id { exp }

| fix id { exp }

| let bind

⇤
in exp

| letrec bind

⇤
in exp

| letpar bind

⇤
in exp

| exp exp

| exp � exp

| int

qid = id

| id . qid
bind = id = exp Highlighting

Context-Free

Grammars
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• Many approaches to representing the results of name 

resolution within an (extended) AST, e.g. 
• numeric indexing [deBruijn72] 
• higher-order abstract syntax [PfenningElliott88]  
• nominal logic approaches [GabbayPitts02]

• Good support for binding-sensitive AST manipulation

• But: Do not say how to resolve identifiers in the first place! 

• Also: Can’t represent ill-bound programs 

• And: Tend to be biased towards lambda-like bindings 
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Binding Specification Languages
• Many proposals for domain-specific languages 

(DSLs) for specifying binding structure of a (target) 
language, e.g. 
• Ott [Sewell+10] 
• Romeo [StansiferWand14] 
• Unbound [Weirich+11] 
• Cαml [Pottier06] 

• NaBL [Konat+12]
• Generate code to do resolution and record results
• But: what are the semantics of such a language?
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• Answer: the meaning of a binding specification for 
language L should be given by a function from       
L programs to their “resolution structures”

• So we need a (uniform, language-independent) 
method for describing such resolution structures...

• ...that can be used to compute the resolution of 
each program identifier

• (or to verify that a claimed resolution is valid)

The Missing Piece 
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Design Goals

• Handle broad range of language binding features...

• ...using minimal number of constructs

• Make resolution structure language-independent

• Handle named collections of names (e.g. modules, 
classes, etc.) within the theory

• Allow description of programs with resolution errors
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A Theory of Name Resolution

A unique  
representation

A standard
formalism

Scope

Graphs     

Supports

Resolution

𝜶-equivalence

IDE Navigation

Refactoring tools

For statically lexically scoped languages

Reasoning tools
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Resolution Scheme

Program Scope 
Graph

Resolved 
Program

Language-
dependent

Language-
independent*

Resolution of a reference in a scope graph: 
      
    Building a path   
             from a reference node  
                      to a declaration node  
                               following path construction rules

*Parameterized by notions of path well-formedness
              and ordering  
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Resolution Algorithm v1

imperative language, explained here. The traversal is specified as a collection of
(potentially) mutually recursive functions, one or more for each syntactic class
of LM. Each function f is defined by a set of clauses [[pattern]]f

args

. When f is
invoked on a term, the clause whose pattern matches the term is executed. Func-
tions may also take additional arguments args. Each clause body consists of a
sequence of statements separated by semicolons. Functions can optionally return
a value using ret(). The let statement binds a metavariable in the remainder of
the clause body. An empty clause body is written ().

The algorithm is initiated by invoking [[_]]prog on an entire LM program. Its
net effect is to produce a scope graph via a sequence of imperative operations.
The construct new

P

creates a new scope S with parent P (or no parent if p =?)
and empty sets D(S), R(S), and I(S). These sets are subsequently populated
using the += operator, which extends a set imperatively. The program scope
graph is simply the set of scopes that have been created and populated when
the traversal terminates.

5 Resolution Algorithm

The calculus of Section 2 gives a precise definition of resolution. In principle, we
can search for derivations in the calculus to answer questions such as “Does this
variable reference resolve to this declaration?” or “Which variable declarations
does this reference resolve to?” But automating this search process is not trivial,
because of the need for back-tracking and because the paths in reachability
derivations can have cycles (visiting the same scope more than once), and hence
can grow arbitrarily long.

In this section we describe a deterministic and terminating algorithm for
computing resolutions, which provides a practical basis for implementing tools
based on scope graphs, and prove that it is sound and complete with respect
to the calculus. This algorithm also connects the calculus, which talks about
resolution of a single variable at a time, to more conventional descriptions of
binding which use “environments” or “contexts” to describe all the visible or
reachable declarations accessible from a program location.

For us, an environment is just a set of declarations xD
i

. This can be thought
of as a function from identifiers to (possible empty) sets of declaration positions.
(In this paper, we leave the representation of environments abstract; in practice,
one would use a hash table or other dictionary data structure.) We construct an
atomic environment corresponding to the declarations in each scope, and then
combine atomic environments to describe the sets of reachable and visible dec-
larations resulting from the parent and import relations. The key operator for
combining environments is shadowing, which returns the union of the declara-
tions in two environments restricted so that if a variable x has any declarations
in the first environment, no declarations of x are included from the second envi-
ronment. More formally:

Definition 1 (Shadowing). For any environments E1, E2, we write:
E1 / E2 := E1 [ {xD

i

2 E2 | @ xD
i

0 2 E1}
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where

2

ED[I, S](S) :=

(

; if S 2 S
D(S)

EP [I, S](S) :=

⇢

; if S 2 S
EV [I, {S} [ S](P(S))

EI [I, S](S) :=

8

<

:

; if S 2 S
S

n

EL[I, {S} [ S](Sy) | yR
i 2 I(S) \ I ^ y

D
j :Sy 2 Resolve[I](yR

i )
o

EL[I, S](S) := ED[I, S](S) / EI [I, S](S)

EV [I, S](S) := EL[I, S](S) / EP [I, S](S)

Resolve[I](xR
i ) := {xD

j | 9S s.t. x

R
i 2 R(S) ^ x

D
j 2 EV [{xR

i } [ I, ;](S)}

ED[I](S) := D(S)

EP [I](S) := EV [I](P(S))
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S
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Resolve(xR
i ) := {xD
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R
i 2 R(S) ^ x

D
j 2 EV (S)}
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imperative language, explained here. The traversal is specified as a collection of
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and empty sets D(S), R(S), and I(S). These sets are subsequently populated
using the += operator, which extends a set imperatively. The program scope
graph is simply the set of scopes that have been created and populated when
the traversal terminates.

5 Resolution Algorithm

The calculus of Section 2 gives a precise definition of resolution. In principle, we
can search for derivations in the calculus to answer questions such as “Does this
variable reference resolve to this declaration?” or “Which variable declarations
does this reference resolve to?” But automating this search process is not trivial,
because of the need for back-tracking and because the paths in reachability
derivations can have cycles (visiting the same scope more than once), and hence
can grow arbitrarily long.

In this section we describe a deterministic and terminating algorithm for
computing resolutions, which provides a practical basis for implementing tools
based on scope graphs, and prove that it is sound and complete with respect
to the calculus. This algorithm also connects the calculus, which talks about
resolution of a single variable at a time, to more conventional descriptions of
binding which use “environments” or “contexts” to describe all the visible or
reachable declarations accessible from a program location.

For us, an environment is just a set of declarations xD
i

. This can be thought
of as a function from identifiers to (possible empty) sets of declaration positions.
(In this paper, we leave the representation of environments abstract; in practice,
one would use a hash table or other dictionary data structure.) We construct an
atomic environment corresponding to the declarations in each scope, and then
combine atomic environments to describe the sets of reachable and visible dec-
larations resulting from the parent and import relations. The key operator for
combining environments is shadowing, which returns the union of the declara-
tions in two environments restricted so that if a variable x has any declarations
in the first environment, no declarations of x are included from the second envi-
ronment. More formally:

Definition 1 (Shadowing). For any environments E1, E2, we write:
E1 / E2 := E1 [ {xD

i

2 E2 | @ xD
i

0 2 E1}
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• but still might not terminate due to cycles 
    (e.g. consider a scope that imports itself) 
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Lemma: visibility paths never have cycles
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Fig. 18. Resolution algorithm

Figure 18 specifies an algorithm Res[I](xR
i

) for resolving a reference xR
i

to a set of
corresponding declarations xD

j

. Like the calculus, the algorithm avoids trying to
use an import to resolve itself by maintaining a set I of “already seen” imports.
The algorithm works by computing the full environment Env

V

[I, S](S) of decla-
rations that are visible in the scope S containing xR

i

, and then extracting just
the declarations for x. The full environment, in turn, is built from the more basic
environments Env

D

of immediate declarations, Env
I

of imported declarations,
and Env

P

of lexically enclosing declarations, using the shadowing operator. The
order of construction matches both the WF restriction from the calculus, which
prevents the use of parent after an import, and the path ordering <, which
prefers immediate declarations over imports and imports over declarations from
the parent scope. (Note that the algorithm does not work for the variants of WF
and < described in Section 2.5.) A key difference from the calculus is that the
shadowing operator is applied at each stage in environment construction, rather
than applying the visibility criterion just once at the “top level” as in calculus
rule V . This difference is a natural consequence of the fact that the algorithm
computes sets of declarations rather than full derivation paths, so it does not
maintain enough information to delay the visibility computation.

Termination The algorithm is terminating using the well-founded lexicographic
measure (|R(G) \ I|, |S(G) \ S|). Termination is straightforward by unfolding the
calls to Res in Env

I

and then inlining the definitions of Env
V

and Env
L

: this
gives an equivalent algorithm in which the measure strictly decreases at every
recursive call.

5.1 Correctness of Resolution Algorithm

The resolution algorithm is sound and complete with respect to the calculus.

Theorem 1. 8 I, xR
i

, j, (xD
j

2 Res[I](xR
i

)) () (9p s.t. I ` p : xR
i

7�! xD
j

).

We sketch the proof of this theorem here; details of the supporting lemmas
and proofs are in Appendix B. To begin with, we must deal with the fact that
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5.1 ↵-Equivalence

We now define ↵-equivalence using scope graphs. Except for the leaves represent-
ing identifiers, two ↵-equivalent programs must have the same abstract syntax
tree. We write P ' P’ (pronounced “P and P’ are similar”) when the ASTs of P
and P’ are equal up to identifiers. To compare two programs we first compare
their AST structures; if these are equal then we compare how identifiers behave
in these programs. Since two potentially ↵-equivalent programs are similar, the
identifiers occur at the same positions. In order to compare the identifiers’ behav-
ior, we define equivalence classes of positions of identifiers in a program: positions
in the same equivalence class are declarations of or reference to the same entity.
The abstract position x̄ identifies the equivalence class corresponding to the free
variable x.

Given a program P, we write P for the set of positions corresponding to
references and declarations and PX for P extended with the artificial positions
(e.g. x̄). We define the P⇠ equivalence relation between elements of PX as the
reflexive symmetric and transitive closure of the resolution relation.

Definition 7 (Position equivalence).

` p : r i

x

7�! d i

0

x

i
P⇠ i0

i0
P⇠ i

i
P⇠ i0

i
P⇠ i0 i0

P⇠ i00

i
P⇠ i00 i

P⇠ i

In this equivalence relation, the class containing the abstract free variable dec-
laration can not contain any other declaration. So the references in a particular
class are either all free or all bound.

Lemma 6 (Free variable class). The equivalence class of a free variable does
not contain any other declaration, i.e. 8 d i

x

s.t. i
P⇠ x̄ =) i = x̄

Proof. Detailed proof is in appendix A.5, we first prove:
8 r i

x

, (` > : r i

x

7�! d x̄

x

) =) 8 p d i

0

x

, p ` r i

x

7�! d i

0

x

=) i0 = x̄ ^ p = >
and then proceed by induction on the equivalence relation.

The equivalence classes defined by this relation contain references to or declara-
tions of the same entity. Given this relation, we can state that two program are
↵-equivalent if the identifiers at identical positions refer to the same entity, that
is belong to the same equivalence class:

Definition 8 (↵-equivalence). Two programs P1 and P2 are ↵-equivalent (de-
noted P1

↵⇡ P2) when they are similar and have the same ⇠-equivalence classes:

P1
↵⇡ P2 , P1 ' P2 ^ 8 e e0, e

P1⇠ e0 , e
P2⇠ e0

Remark 1.
↵⇡ is an equivalence relation since ' and , are equivalence relations.

if have same AST ignoring identifier names



Language-independent 𝜶-equivalence

Position equivalence

24

5.1 ↵-Equivalence

We now define ↵-equivalence using scope graphs. Except for the leaves represent-
ing identifiers, two ↵-equivalent programs must have the same abstract syntax
tree. We write P ' P’ (pronounced “P and P’ are similar”) when the ASTs of P
and P’ are equal up to identifiers. To compare two programs we first compare
their AST structures; if these are equal then we compare how identifiers behave
in these programs. Since two potentially ↵-equivalent programs are similar, the
identifiers occur at the same positions. In order to compare the identifiers’ behav-
ior, we define equivalence classes of positions of identifiers in a program: positions
in the same equivalence class are declarations of or reference to the same entity.
The abstract position x̄ identifies the equivalence class corresponding to the free
variable x.

Given a program P, we write P for the set of positions corresponding to
references and declarations and PX for P extended with the artificial positions
(e.g. x̄). We define the P⇠ equivalence relation between elements of PX as the
reflexive symmetric and transitive closure of the resolution relation.

Definition 7 (Position equivalence).

` p : r i

x

7�! d i

0

x

i
P⇠ i0

i0
P⇠ i

i
P⇠ i0

i
P⇠ i0 i0

P⇠ i00

i
P⇠ i00 i

P⇠ i

In this equivalence relation, the class containing the abstract free variable dec-
laration can not contain any other declaration. So the references in a particular
class are either all free or all bound.

Lemma 6 (Free variable class). The equivalence class of a free variable does
not contain any other declaration, i.e. 8 d i

x

s.t. i
P⇠ x̄ =) i = x̄

Proof. Detailed proof is in appendix A.5, we first prove:
8 r i

x

, (` > : r i

x

7�! d x̄

x

) =) 8 p d i

0

x

, p ` r i

x

7�! d i

0

x

=) i0 = x̄ ^ p = >
and then proceed by induction on the equivalence relation.

The equivalence classes defined by this relation contain references to or declara-
tions of the same entity. Given this relation, we can state that two program are
↵-equivalent if the identifiers at identical positions refer to the same entity, that
is belong to the same equivalence class:

Definition 8 (↵-equivalence). Two programs P1 and P2 are ↵-equivalent (de-
noted P1

↵⇡ P2) when they are similar and have the same ⇠-equivalence classes:

P1
↵⇡ P2 , P1 ' P2 ^ 8 e e0, e

P1⇠ e0 , e
P2⇠ e0

Remark 1.
↵⇡ is an equivalence relation since ' and , are equivalence relations.

xi xi'

Program similarity

24

5.1 ↵-Equivalence

We now define ↵-equivalence using scope graphs. Except for the leaves represent-
ing identifiers, two ↵-equivalent programs must have the same abstract syntax
tree. We write P ' P’ (pronounced “P and P’ are similar”) when the ASTs of P
and P’ are equal up to identifiers. To compare two programs we first compare
their AST structures; if these are equal then we compare how identifiers behave
in these programs. Since two potentially ↵-equivalent programs are similar, the
identifiers occur at the same positions. In order to compare the identifiers’ behav-
ior, we define equivalence classes of positions of identifiers in a program: positions
in the same equivalence class are declarations of or reference to the same entity.
The abstract position x̄ identifies the equivalence class corresponding to the free
variable x.

Given a program P, we write P for the set of positions corresponding to
references and declarations and PX for P extended with the artificial positions
(e.g. x̄). We define the P⇠ equivalence relation between elements of PX as the
reflexive symmetric and transitive closure of the resolution relation.

Definition 7 (Position equivalence).

` p : r i

x

7�! d i

0

x

i
P⇠ i0

i0
P⇠ i

i
P⇠ i0

i
P⇠ i0 i0

P⇠ i00

i
P⇠ i00 i

P⇠ i

In this equivalence relation, the class containing the abstract free variable dec-
laration can not contain any other declaration. So the references in a particular
class are either all free or all bound.

Lemma 6 (Free variable class). The equivalence class of a free variable does
not contain any other declaration, i.e. 8 d i

x

s.t. i
P⇠ x̄ =) i = x̄

Proof. Detailed proof is in appendix A.5, we first prove:
8 r i

x

, (` > : r i

x

7�! d x̄

x

) =) 8 p d i

0

x

, p ` r i

x

7�! d i

0

x

=) i0 = x̄ ^ p = >
and then proceed by induction on the equivalence relation.

The equivalence classes defined by this relation contain references to or declara-
tions of the same entity. Given this relation, we can state that two program are
↵-equivalent if the identifiers at identical positions refer to the same entity, that
is belong to the same equivalence class:

Definition 8 (↵-equivalence). Two programs P1 and P2 are ↵-equivalent (de-
noted P1

↵⇡ P2) when they are similar and have the same ⇠-equivalence classes:

P1
↵⇡ P2 , P1 ' P2 ^ 8 e e0, e

P1⇠ e0 , e
P2⇠ e0

Remark 1.
↵⇡ is an equivalence relation since ' and , are equivalence relations.

if have same AST ignoring identifier names



Language-independent 𝜶-equivalence

Position equivalence

24

5.1 ↵-Equivalence

We now define ↵-equivalence using scope graphs. Except for the leaves represent-
ing identifiers, two ↵-equivalent programs must have the same abstract syntax
tree. We write P ' P’ (pronounced “P and P’ are similar”) when the ASTs of P
and P’ are equal up to identifiers. To compare two programs we first compare
their AST structures; if these are equal then we compare how identifiers behave
in these programs. Since two potentially ↵-equivalent programs are similar, the
identifiers occur at the same positions. In order to compare the identifiers’ behav-
ior, we define equivalence classes of positions of identifiers in a program: positions
in the same equivalence class are declarations of or reference to the same entity.
The abstract position x̄ identifies the equivalence class corresponding to the free
variable x.

Given a program P, we write P for the set of positions corresponding to
references and declarations and PX for P extended with the artificial positions
(e.g. x̄). We define the P⇠ equivalence relation between elements of PX as the
reflexive symmetric and transitive closure of the resolution relation.
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In this equivalence relation, the class containing the abstract free variable dec-
laration can not contain any other declaration. So the references in a particular
class are either all free or all bound.

Lemma 6 (Free variable class). The equivalence class of a free variable does
not contain any other declaration, i.e. 8 d i
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s.t. i
P⇠ x̄ =) i = x̄

Proof. Detailed proof is in appendix A.5, we first prove:
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and then proceed by induction on the equivalence relation.

The equivalence classes defined by this relation contain references to or declara-
tions of the same entity. Given this relation, we can state that two program are
↵-equivalent if the identifiers at identical positions refer to the same entity, that
is belong to the same equivalence class:

Definition 8 (↵-equivalence). Two programs P1 and P2 are ↵-equivalent (de-
noted P1

↵⇡ P2) when they are similar and have the same ⇠-equivalence classes:

P1
↵⇡ P2 , P1 ' P2 ^ 8 e e0, e

P1⇠ e0 , e
P2⇠ e0

Remark 1.
↵⇡ is an equivalence relation since ' and , are equivalence relations.

xi xi'

Program similarity

24

5.1 ↵-Equivalence
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tree. We write P ' P’ (pronounced “P and P’ are similar”) when the ASTs of P
and P’ are equal up to identifiers. To compare two programs we first compare
their AST structures; if these are equal then we compare how identifiers behave
in these programs. Since two potentially ↵-equivalent programs are similar, the
identifiers occur at the same positions. In order to compare the identifiers’ behav-
ior, we define equivalence classes of positions of identifiers in a program: positions
in the same equivalence class are declarations of or reference to the same entity.
The abstract position x̄ identifies the equivalence class corresponding to the free
variable x.

Given a program P, we write P for the set of positions corresponding to
references and declarations and PX for P extended with the artificial positions
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and then proceed by induction on the equivalence relation.

The equivalence classes defined by this relation contain references to or declara-
tions of the same entity. Given this relation, we can state that two program are
↵-equivalent if the identifiers at identical positions refer to the same entity, that
is belong to the same equivalence class:

Definition 8 (↵-equivalence). Two programs P1 and P2 are ↵-equivalent (de-
noted P1

↵⇡ P2) when they are similar and have the same ⇠-equivalence classes:

P1
↵⇡ P2 , P1 ' P2 ^ 8 e e0, e

P1⇠ e0 , e
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Remark 1.
↵⇡ is an equivalence relation since ' and , are equivalence relations.
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We now define ↵-equivalence using scope graphs. Except for the leaves represent-
ing identifiers, two ↵-equivalent programs must have the same abstract syntax
tree. We write P ' P’ (pronounced “P and P’ are similar”) when the ASTs of P
and P’ are equal up to identifiers. To compare two programs we first compare
their AST structures; if these are equal then we compare how identifiers behave
in these programs. Since two potentially ↵-equivalent programs are similar, the
identifiers occur at the same positions. In order to compare the identifiers’ behav-
ior, we define equivalence classes of positions of identifiers in a program: positions
in the same equivalence class are declarations of or reference to the same entity.
The abstract position x̄ identifies the equivalence class corresponding to the free
variable x.

Given a program P, we write P for the set of positions corresponding to
references and declarations and PX for P extended with the artificial positions
(e.g. x̄). We define the P⇠ equivalence relation between elements of PX as the
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In this equivalence relation, the class containing the abstract free variable dec-
laration can not contain any other declaration. So the references in a particular
class are either all free or all bound.

Lemma 6 (Free variable class). The equivalence class of a free variable does
not contain any other declaration, i.e. 8 d i
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and then proceed by induction on the equivalence relation.

The equivalence classes defined by this relation contain references to or declara-
tions of the same entity. Given this relation, we can state that two program are
↵-equivalent if the identifiers at identical positions refer to the same entity, that
is belong to the same equivalence class:

Definition 8 (↵-equivalence). Two programs P1 and P2 are ↵-equivalent (de-
noted P1

↵⇡ P2) when they are similar and have the same ⇠-equivalence classes:

P1
↵⇡ P2 , P1 ' P2 ^ 8 e e0, e

P1⇠ e0 , e
P2⇠ e0

Remark 1.
↵⇡ is an equivalence relation since ' and , are equivalence relations.(with some further details about free variables)

Alpha equivalence
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module A1 {

def x2 := 1

}

module B3 {

def x4 := 2

}

module C5 {

import A6 B7;

def y8 := x9

}

module D10 {

import A11;

def y12 := x13

}

module E14 {

import B15;

def y16 := x17

}

P1

module AA1 {

def z2 := 1

}

module BB3 {

def z4 := 2

}

module C5 {

import AA6 BB7;

def s8 := z9

}

module D10 {

import AA11;

def u12 := z13

}

module E14 {

import BB15;

def v16 := z17

}

P2

module A1 {

def z2 := 1

}

module B3 {

def x4 := 2

}

module C5 {

import A6 B7;

def y8 := z9

}

module D10 {

import A11;

def y12 := z13

}

module E14 {

import B15;

def y16 := x17

}

P3

Fig. 23. ↵-equivalence and duplicate declaration

5.2 The

↵⇡ Relation

Free variables. The P⇠ equivalence classes corresponding to free variables x also
contains the artificial position x̄. Since the equivalence classes of two equivalent
programs P1 and P2 have to be exactly the same, every element equivalent to
x̄ (i.e. a free reference) in P1 is also equivalent to x̄ in P2. Therefore the free
references of ↵-equivalent programs have to be identical.

Duplicate declarations. The definition allows us to also capture ↵-equivalence
of programs with duplicate declarations. For example, in the program P1 in
Figure 20, x9 has a duplicate declaration (it can resolve to x2 through A1 or to
x4 through B3) whereas x13 simply resolves to x2 and x17 to x4 . Thus positions
2, 4, 9, 13, and 17 are in the same equivalence class. (Similarly, positions 1,6,
and 11 form an equivalence class refering to module A and positions 3,7, and
15 form an equivalence class refering to module B , while positions 8, 12, and 16
each form singleton equivalence classes.) The program P2 is ↵-equivalent to P1:
all members of each equivalence class have been consistently renamed. However
the program P3, where only the first declaration of x and its direct references
are renamed into z , is not ↵-equivalent to P1, z9 now only resolves to z2 thus
this program does not contain the initial ambiguity of P1.

5.3 Renaming

Renaming is the substitution of a bound variable by a new variable throughout
the program. It has several practical applications such as rename refactoring in
an IDE, transformation to program with unique identifiers, or as an intermediate
transformation when implementing capture-avoiding substitution.

P1
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5.1 ↵-Equivalence

We now define ↵-equivalence using scope graphs. Except for the leaves represent-
ing identifiers, two ↵-equivalent programs must have the same abstract syntax
tree. We write P ' P’ (pronounced “P and P’ are similar”) when the ASTs of P
and P’ are equal up to identifiers. To compare two programs we first compare
their AST structures; if these are equal then we compare how identifiers behave
in these programs. Since two potentially ↵-equivalent programs are similar, the
identifiers occur at the same positions. In order to compare the identifiers’ behav-
ior, we define equivalence classes of positions of identifiers in a program: positions
in the same equivalence class are declarations of or reference to the same entity.
The abstract position x̄ identifies the equivalence class corresponding to the free
variable x.

Given a program P, we write P for the set of positions corresponding to
references and declarations and PX for P extended with the artificial positions
(e.g. x̄). We define the P⇠ equivalence relation between elements of PX as the
reflexive symmetric and transitive closure of the resolution relation.

Definition 7 (Position equivalence).
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In this equivalence relation, the class containing the abstract free variable dec-
laration can not contain any other declaration. So the references in a particular
class are either all free or all bound.

Lemma 6 (Free variable class). The equivalence class of a free variable does
not contain any other declaration, i.e. 8 d i

x

s.t. i
P⇠ x̄ =) i = x̄

Proof. Detailed proof is in appendix A.5, we first prove:
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and then proceed by induction on the equivalence relation.

The equivalence classes defined by this relation contain references to or declara-
tions of the same entity. Given this relation, we can state that two program are
↵-equivalent if the identifiers at identical positions refer to the same entity, that
is belong to the same equivalence class:

Definition 8 (↵-equivalence). Two programs P1 and P2 are ↵-equivalent (de-
noted P1

↵⇡ P2) when they are similar and have the same ⇠-equivalence classes:

P1
↵⇡ P2 , P1 ' P2 ^ 8 e e0, e

P1⇠ e0 , e
P2⇠ e0

Remark 1.
↵⇡ is an equivalence relation since ' and , are equivalence relations.

P2 P2
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5.1 ↵-Equivalence

We now define ↵-equivalence using scope graphs. Except for the leaves represent-
ing identifiers, two ↵-equivalent programs must have the same abstract syntax
tree. We write P ' P’ (pronounced “P and P’ are similar”) when the ASTs of P
and P’ are equal up to identifiers. To compare two programs we first compare
their AST structures; if these are equal then we compare how identifiers behave
in these programs. Since two potentially ↵-equivalent programs are similar, the
identifiers occur at the same positions. In order to compare the identifiers’ behav-
ior, we define equivalence classes of positions of identifiers in a program: positions
in the same equivalence class are declarations of or reference to the same entity.
The abstract position x̄ identifies the equivalence class corresponding to the free
variable x.

Given a program P, we write P for the set of positions corresponding to
references and declarations and PX for P extended with the artificial positions
(e.g. x̄). We define the P⇠ equivalence relation between elements of PX as the
reflexive symmetric and transitive closure of the resolution relation.

Definition 7 (Position equivalence).
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In this equivalence relation, the class containing the abstract free variable dec-
laration can not contain any other declaration. So the references in a particular
class are either all free or all bound.

Lemma 6 (Free variable class). The equivalence class of a free variable does
not contain any other declaration, i.e. 8 d i

x

s.t. i
P⇠ x̄ =) i = x̄

Proof. Detailed proof is in appendix A.5, we first prove:
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and then proceed by induction on the equivalence relation.

The equivalence classes defined by this relation contain references to or declara-
tions of the same entity. Given this relation, we can state that two program are
↵-equivalent if the identifiers at identical positions refer to the same entity, that
is belong to the same equivalence class:

Definition 8 (↵-equivalence). Two programs P1 and P2 are ↵-equivalent (de-
noted P1

↵⇡ P2) when they are similar and have the same ⇠-equivalence classes:

P1
↵⇡ P2 , P1 ' P2 ^ 8 e e0, e

P1⇠ e0 , e
P2⇠ e0

Remark 1.
↵⇡ is an equivalence relation since ' and , are equivalence relations.

P3

Preserving ambiguity
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(ongoing work)
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- definition before use 
- different let binding flavors 
- recursive modules 
- imports and includes 
- qualified names 
- class inheritance 
- partial classes 
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• We have modeled a large set of example binding patterns 

- definition before use 
- different let binding flavors 
- recursive modules 
- imports and includes 
- qualified names 
- class inheritance 
- partial classes 
- …

Validation

• Next goal: fully model some real languages 
- Java 
- ML 
- …



Generating Scope Graphs from AST

[[ds]]prog := P (S) := ? ^ [[ds]]decl
⇤

S (new S)

[[moduleXi {ds}]]decls := X

D
i :S

0 2 D(s) ^ P (S0) := s ^ [[ds]]decl
⇤

S0 (new S

0)

[[import Xs.Xi]]
decl

s := X

R
i 2 I(s) ^ [[Xs.Xi]]

qid

s

[[def b]]decls := [[b]]binds,s

[[xi = e]]bindsr,sd := x

D
i 2 D(sd) ^ [[e]]expsr

[[xi]]
qid

s := x

R
i 2 R(s)

[[fun (xi:t){e}]]exps := P (S0) := s ^ x

D
i 2 D(S0) ^ [[e]]expS0 (new S

0)

[[letrec bs in e]]exps := P (S0) := s ^ [[bs]]bind
⇤

S0,S0 ^ [[e]]expS0 (new S

0)

[[letpar bs in e]]exps := P (S0) := s ^ [[bs]]bind
⇤

S,S0 ^ [[e]]expS0 (new S

0)

[[Xs.xi]]
exp

s := [[Xs.xi]]
qid

s

[[e1 e2]]
exp

s := [[e1]]
exp

s ^ [[e2]]
exp

s

Authors: Hendrik van Antwerpen, Pierre Neron, Andrew Tolmach, Eelco Visser, Guido
Wachsmuth

2 2015/6/3

generate smallest graph satisfying constraints



Binding gives Types
Static type-checking (or inference) is one obvious client 
for name resolution 

In many cases, we can perform resolution before doing 
type analysis

def x : int = 6

def f = fun (y : int) { x + y }
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Types give Binding
But sometimes we need types before we can 
do name resolution

record A1 { x1 : int } 
record B1 { a1 : A2 ; x2 : bool}

def z1 : B2 = ...

def y1 = z2.x3

def y2 = z3.a2.x4
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Types give Binding
But sometimes we need types before we can 
do name resolution

record A1 { x1 : int } 
record B1 { a1 : A2 ; x2 : bool}

def z1 : B2 = ...

def y1 = z2.x3

def y2 = z3.a2.x4



Types give Binding
But sometimes we need types before we can 
do name resolution

record A1 { x1 : int } 
record B1 { a1 : A2 ; x2 : bool}

def z1 : B2 = ...

def y1 = z2.x3

def y2 = z3.a2.x4

Our approach: interleave partial name resolution with 
type resolution (also using constraints)
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• Scope graph semantics for binding specification 
languages (starting with NaBL)

• Resolution-sensitive program transformations                
(e.g. renaming, refactoring)

• Dynamic analogs to static scope graphs

Also in the works...
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