
DSL Summer School Intro
Martin Odersky

EPFL

Why DSLs?

1. Give users ways to express themselves in a notation
tailored to their domain.
 à Better abstraction
 à Fewer errors
 à More concise and clearer notation (sometimes)

2. Allow new implementation capabilities that are
specialized for a domain.
 à Higher performance
 à Non-traditional target platforms

all DSLs have the purpose of productivity
•  2) some are designed to achieve performance
•  3) frameworks/platforms for implementing DSLs: are

divided into external
•  and internal DSLs, several choices for the latter
•  4) some DSLs are user facing, others not
•  5) some DSLs are translated into standard PLs, others

not

2

DSL

External Internal
 shallow embedding deep embedding.

 New Syntax New Implementation

 Better Performance New Targets

3

Implementation Decisions

Scala and DSLs

Scala has proven to be fertile
ground for building DSLs

–  can be molded into new languages
by adding libraries (domain
specific or general)

 See: “Growing a language”
 (Guy Steele, 1998)

Ecosystem provides many tools
(parser combinators, macros, etc),
to define new DSLs.

4

A Growable Language

•  Flexible Syntax
•  Flexible Types
•  User-definable operators
•  Higher-order functions
•  Implicits
...

Make it relatively easy to build new DSLs on top of Scala
And where this fails, we can always use the (experimental)
macro system.

5

A Growable Language

6

SBT

Chisel Spark

Spray Dispatch

Akka

ScalaTest
Squeryl Specs

shapeless

Scalaz

Slick

Spiral
Opti{X}

Growable = Good?

In fact, it’s a double edged sword.
Growable is great because it does not presume that the
language designers know everything a priori about the
“right way” to program.
But it has its challenges:

–  DSLs can fracture the user
community

–  Besides, no language is liked
by everyone, no matter whether
its a DSL or general purpose.

–  Host languages get the blame
for the DSLs they embed.

7

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object InvertedIndex {
 def main(args: Array[String]) = {

 val sc = new SparkContext(
 "local", "Inverted Index")

 sc.textFile("data/crawl")
 .map { line =>
 val array = line.split("\t", 2)
 (array(0), array(1))
 }
 .flatMap {
 case (path, text) =>
 text.split("""\W+""") map {
 word => (word, path)
 }
 }
 .map {
 case (w, p) => ((w, p), 1)
 }
 .reduceByKey {
 (n1, n2) => n1 + n2
 }
 .map {
 case ((word,path),n) => (word,(path,n))
 }
 .groupByKey
 .mapValues { iter =>
 iter.toSeq.sortBy {
 case (path, n) => (-n, path)
 }.mkString(", ")
 }
 .saveAsTextFile(argz.outpath)

 sc.stop()
 }
}

8

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object InvertedIndex {
 def main(args: Array[String]) = {

 val sc = new SparkContext(
 "local", "Inverted Index")

 sc.textFile("data/crawl")
 .map { line =>
 val array = line.split("\t", 2)
 (array(0), array(1))
 }
 .flatMap {
 case (path, text) =>
 text.split("""\W+""") map {
 word => (word, path)
 }
 }
 .map {
 case (w, p) => ((w, p), 1)
 }
 .reduceByKey {
 (n1, n2) => n1 + n2
 }
 .map {
 case ((word,path),n) => (word,(path,n))
 }
 .groupByKey
 .mapValues { iter =>
 iter.toSeq.sortBy {
 case (path, n) => (-n, path)
 }.mkString(", ")
 }
 .saveAsTextFile(argz.outpath)

 sc.stop()
 }
}

9

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object InvertedIndex {
 def main(args: Array[String]) = {

 val sc = new SparkContext(
 "local", "Inverted Index")

 sc.textFile("data/crawl")
 .map { line =>
 val array = line.split("\t", 2)
 (array(0), array(1))
 }
 .flatMap {
 case (path, text) =>
 text.split("""\W+""") map {
 word => (word, path)
 }
 }
 .map {
 case (w, p) => ((w, p), 1)
 }
 .reduceByKey {
 (n1, n2) => n1 + n2
 }
 .map {
 case ((word,path),n) => (word,(path,n))
 }
 .groupByKey
 .mapValues { iter =>
 iter.toSeq.sortBy {
 case (path, n) => (-n, path)
 }.mkString(", ")
 }
 .saveAsTextFile(argz.outpath)

 sc.stop()
 }
}

10

((word1, path1), n1)
((word2, path2), n2)
...

Pitfalls

•  The Lisp Curse

•  Syntactic Flexibility

•  Interpretation Indirection

•  Tooling

11

The Lisp Curse

“The power of Lisp is its own worst enemy”

~

“Lisp is so powerful that problems which are technical issues
in other programming languages are social issues in Lisp.”

(Rudolf Winestock)

•  0123456789 10

12

Syntactic Flexibility

•  What is the single thing people have complained most
about Scala programs?

13

HTTP Dispatch Library

14

Syntactic Flexibility

•  What is the single thing people have complained most
about Scala programs?

Symbolic Names!

Symbolic names are great for people who know a
DSL inside out.

They are terrifying for everyone else.

15

The Story of SBT

•  SBT
–  was: Simple Build Tool
–  now: Scala Build Tool (because people find it anything but

simple).

•  SBT 0.7: Essentially a Scala library to write programs
that do builds. Direct mapping of all features

•  SBT 10.x: Essentially a new language very cleverly
embedded in Scala
–  Build definitions manipulate global maps of settings and tasks (in

an imperative way!
–  Strange syntax
–  Hard to debug builds because of interpretation indirection.

16

SBT Example

This was version 0.11, later versions have simplified the
syntax.

17

A Story about Macros

•  Scala 2.10 got experimental macros
•  Could invoke arbirary Scala code during compilation.
•  The Play framework designers had a really clever idea:

A macro that would automatically validate a query against a
database schema.
–  When seeing a query, go to the database, get the schema,

validate the query text against it.
–  What could go wrong?

–  In an IDE the typechecker is run on every keystroke.
–  So the macro expansion also happens on every keystroke.
à IDE slows to a crawl.
à Consider Tooling for DSLs

18

Problems with Slick

•  Slick is a database connectivity layer for Scala.
•  Allows data to be expressed as Scala case classes that

correspond to some database schema.
•  Allows queries to be expressed in terms of for-

expressions (which translate to map/flatmap/filter).

Challenges:

-  Compilation times due to encodings of HLists and

HMaps
-  Error messages for type errors involving schemas.

19

Some Research Directions

•  How can we balance expressiveness and uniformity?

•  How can we restrict capabilities of DSLs?

•  How can we ensure DSL tooling (e.g. error diagnostics,
IDE experience, debugging) is as good as for the host
language?

20

Contents of the Program

Platforms: What are good ways to define and implement
DSLs?

Exploiting Domain Knowledge for

–  Performance: How can we leverage domain-specific knowledge
to get faster programs?

–  New Targets: What are good techniques to translate DSL source
code to non-standard targets?

21

Program

22

Declare your
language

Visser

Quoted DSLs

Wadler

DSL
Embedding in
Scala

Rompf

DSL
Embedding in
Racket

Flatt

DSL
Embedding in
Haskell

Newton

Exploiting DS
Knowledge:
Databases
and Data
Analytics

Koch

Exploiting DS
Knowledge:
Spiral

Püschel &
Ofenbeck

Hetero-
geneous
Computing

Olukotun

Dynamic
Compilation

Wuerthinger

Re-
configurable
Computing

Bachrach

Mon Tue Wed Thu Fri

Platforms Performance New Targets

