DSL Summer School Intro

Martin Odersky
EPFL

Why DSLs?

1. Give users ways to express themselves in a notation
tailored to their domain.

- Better abstraction

- Fewer errors
- More concise and clearer notation (sometimes)

2. Allow new implementation capabilities that are
specialized for a domain.

- Higher performance
- Non-traditional target platforms

Implementation Decisions

DSL

RN

External Internal

shallow embeddi \ﬁ) embedding.

New Syntax New Implementation

7\

Better Performance New Targets

Scala and DSLs

Scala has proven to be fertile
ground for building DSLs
— can be molded into new languages
by adding libraries (domain
specific or general)

See: “Growing a language”
(Guy Steele, 1998)

Ecosystem provides many tools

(parser combinators, macros, etc),
to define new DSLs.

A Growable Language

* Flexible Syntax

* Flexible Types

« User-definable operatol
« Higher-order functions
* Implicits

Make it relatively easy to build new DSLs on top of Scala

And where this fails, we can always use the (experimental)
macro system.

A Growable Language

Chisel
Optigxy o0 Spark

Spiral
.SBT \\ /// Spray

shapeless

—
Akka / \\ Scalaz
ScalaTest / \ '

Squeryl

Specs

Growable = Good?

In fact, it's a double edged sword.

Growable is great because it does not presume that the
language designers know everything a priori about the
“right way” to program.

But it has its challenges:

— DSLs can fracture the user
community

— Besides, no language is liked
by everyone, no matter whether
its a DSL or general purpose.

— Host languages get the blame
for the DSLs they embed.

vaI array = Ime split(

(array(0), array(1))

case (path, text) =>
text.split("""\W+"") map {
word => (word, path)

Y
Y
.map {

case (w, p) == ((w, p), 1)
Y
- .reduceByKey {
i(n1, n2) =>n1+n2

RS Y (R N R N

.map{ line == 58
val array = line.split(t
(array(0), array(1))

flatMap {
case (path, text) =>
text.split(""\W+"") map {

word => (word, path) |

Y
.map {

case (w, p) => ((w, p), 1)
Y
.reduceByKey {

~ (n1,n2) =>n1+n2

B s N i R a i Y\

.map{ -
case (w, fg)

Y
.reduceByKey {

(n1,n2) =>n1 +n2
Y
.map | T
case ((word,path),n) => (word,(path,n))
)
.groupByKey
.mapValues { iter =>
1 iter.toSeq.sortBy {
case (path, n) => (-n, path)
B L mkString(", ")

saveAsTexiFile(argz.outpath)

P f,',, FLowy C 10
37 E . ;

Pitfalls

The Lisp Curse
Syntactic Flexibility
Interpretation Indirection

Tooling

11

The Lisp Curse

“The power of Lisp is its own worst enemy”

“Lisp is so powerful that problems which are technical issues
In other programming languages are social issues in Lisp.”

(Rudolf Winestock)

12

Syntactic Flexibility

* What is the single thing people have complained most
about Scala programs?

13

HTTP Dispatch Library

A <<?
(values)
! /
(host, port) (path)
!
(host)
/
(path)
url

(url)

POST

PUT

DELETE

HEAD

secure

<&

(request)

>\
(charset)

to_uri

>>

((in, charset) =>

result)

>>
((in) => result)

S~

((source) =>
result)

>-
((text) => result)

S>>

((reader) => result)

<
((elem) => result)

</>

((nodeseq) =>
result)

>#

((json) => result)

>|

as_source

as_str

>>>
(out)

>.>
((map) => result)

>+
(block)

~>
((conversion) =>
result)

>+>
(block)

>|
(listener)

Syntactic Flexibility

What is the single thing people have complained most
about Scala programs?

Symbolic Names!

Symbolic names are great for people who know a
DSL inside out.

They are terrifying for everyone else.

15

The Story of SBT

SBT

— was: Simple Build Tool

— now: Scala Build Tool (because people find it anything but
simple).

SBT 0.7: Essentially a Scala library to write programs

that do builds. Direct mapping of all features

SBT 10.x: Essentially a new language very cleverly
embedded in Scala

— Build definitions manipulate global maps of settings and tasks (in
an imperative way!

— Strange syntax
— Hard to debug builds because of interpretation indirection.

16

SBT Example

lazy val scalatraSettings = Defaults.defaultSettings ++ ls.Plugin.lsSettings ++ Seq(
organization := "org.scalatra",
crossScalaVersions := Seq("2.10.0"),
scalaVersion <<= (crossScalaVersions) { versions => versions.head },
scalacOptions ++= Seq("-unchecked", "-deprecation”, "-Yinline-warnings", "-Xcheckinii
scalacOptions ++= Seq("-language:higherKinds", "-language:postfixOps", "-language:im
javacOptions ++= Seq("-target", "1.6", "-source", "1.6", "-Xlint:deprecation"),
manifestSetting,
resolvers ++= Seq(Opts.resolver.sonatypeSnapshots, Opts.resolver.sonatypeReleases),
(LsKeys.tags in LsKeys.lsync) := Seq("web", "sinatra", "scalatra", "akka"),
(LsKeys.docsUrl in LsKeys.lsync) := Some(new URL("http://www.scalatra.org/guides/"))
) ++ mavenCentralFrouFrou

This was version 0.11, later versions have simplified the
syntax.

A Story about Macros

« Scala 2.10 got experimental macros
« Could invoke arbirary Scala code during compilation.

« The Play framework designers had a really clever idea:

A macro that would automatically validate a query against a
database schema.

— When seeing a query, go to the database, get the schema,
validate the query text against it.

— What could go wrong?

— In an IDE the typechecker is run on every keystroke.

— So the macro expansion also happens on every keystroke.
- IDE slows to a crawl.

—> Consider Tooling for DSLs

18

Problems with Slick

« Slick is a database connectivity layer for Scala.

* Allows data to be expressed as Scala case classes that
correspond to some database schema.

» Allows queries to be expressed in terms of for-
expressions (which translate to map/flatmap/filter).

Challenges:

- Compilation times due to encodings of HLists and
HMaps

- Error messages for type errors involving schemas.

19

Some Research Directions

How can we balance expressiveness and uniformity?
How can we restrict capabilities of DSLs?

How can we ensure DSL tooling (e.g. error diagnostics,
IDE experience, debugging) is as good as for the host
language?

20

Contents of the Program

Platforms: What are good ways to define and implement
DSLs?

Exploiting Domain Knowledge for
— Performance: How can we leverage domain-specific knowledge
to get faster programs?

— New Targets: What are good techniques to translate DSL source
code to non-standard targets?

21

Program

Mon Tue Wed Thu Fri
Declare your | DSL DSL Exploiting DS | Dynamic
language Embedding in | Embedding in | Knowledge: Compilation
Visser Scala Haskell Spiral Wuerthinger
Rompf Newton Puschel &
D D D D Ofenbeck
Quoted DSLs | DSL Exploiting DS | Hetero- Re-
Wadler Embedding in | Knowledge: geneous configurable
Racket Databases Computing Computing
Flatt and Dgta Olukotun Bachrach
Analytics
o o h] OO | O

[PIatformsJ [Performance] [New Targets]

